Is a Doctor onboard? Management of inflight medical emergencies depends on other passengers

By ThinkReliability Staff

In a recent article, Pierre M. Barker, M.D. describes a terrifying situation – a passenger stops breathing on a plane over the Atlantic Ocean.  Turns out inflight medical emergencies are not that uncommon.  A study published in the New England Journal of Medicine says that about 1 in 600 flights has an inflight medical emergency – for a total of about 44,000 a year, worldwide.  Although the number of people who die as a result of these emergencies is fairly low, the incident that Dr. Barker was involved in indicates there is much room for improvement.

Taking the information from Dr. Barker’s article, we can perform a visual root cause analysis, or Cause Map, of the medical emergency on his flight.  Information gleaned from performing an analysis of one particular incident can provide valuable insight to improving outcomes for similar incidents – in this case, all inflight medical emergencies.

After recording the what, when, and where of the incident (here it’s inflight over the Atlantic Ocean), we capture the incidents to the goals.  Based on Dr. Barker’s description, this situation is aptly described as a “near miss” for patient safety.  What this means is that, had a lot of luck not headed this passenger’s way, he may very well have died on this flight.  We’ll discuss exactly what it is that made it a near miss – and not a fatality – later.   In this situation – and many other inflight emergencies – it seems that the employees are inadequately prepared for medical emergencies.  This is an impact to them – certainly it must be very stressful to have this sort of situation happen on their watch while feeling like there’s not much they can do.   In this case (and occasionally other, similar inflight emergencies), the flight was diverted, an impact to the organization’s goals.  Considering the sick passenger as a “patient” (and this is how I’ll refer to him going forward), the patient services were impacted because the ventilation bag did not connect to the oxygen tank.  Lastly, other passengers were called on to treat the “patient”, which was found to be very typical from the study.  This is an impact to the labor/time goal.

Once we’ve determined which goals were impacted, we can ask “Why” questions to determine which cause-and-effect relationships led to the impacted goals.  In this case there’s a combination of negative impacts and positive impacts – which is how the situation ended up as a “near miss”.  On the negative side, the patient stopped breathing and suffered cardiac arrest.  Because the conditions on a plane are hardly ideal for health, this may contribute to inflight medical emergencies.  There was difficulty in giving the patient oxygen, because the ventilation bag did not connect to the oxygen tank.  Additionally, there was a lack of patient medical history.  The patient was unconscious and there was no health information available which may have aided in his treatment.

The situation described above could have gone very, very badly.  There are some positive causes that contributed as well to make this a near miss.  First, the fact that the patient had stopped breathing was noticed very quickly, because he happened to have Dr. Barker – a pediatric lung specialist – two rows behind him who noticed his difficulty breathing, and then when it stopped altogether.  Because this was not by design but rather a stroke of rather good luck, this is how we get a “near miss”.  After all, you certainly can’t count on a lung specialist tracking the breathing of every person on a plane to stop inflight emergencies.  Not only was the issue noticed quickly it was treated quickly, by Dr. Barker as well as two ER nurses, a surgeon and an infectious disease doctor, as well as a flight attendant who performed a cardiac massage.  This ad-hoc medical team managed to do a heroic job of stabilizing the patient – including use of an AED, which was on the flight, an IV with fluids and glucose, and administration of an aspirin donated by another patient (though according to the study, aspirin should be included in the emergency medical kit on each flight as well).

The flight was diverted – as quickly as possible – to Miami.  This took about two and a half hours, during which time the medical team kept the patient stable until he was transferred off-plane.  This patient was extremely lucky to have these medical personnel aboard.  According to the NEJM study, doctors are present about 50% of time on flights, and the responsibility for treatment of inflight medical emergencies – as well as the decision whether to divert a plane – is generally left up to them.  When an inflight medical emergency occurs and a doctor is not present, the plane is more likely to divert.

As a result of this incident, Dr. Barker has some recommendations on how to make flying safer.  The NEJM study also makes some recommendations.  These solutions are placed directly on the Cause Map, and evaluated for effectiveness.  In this case, creating a standard emergency kit (there is an FAA-mandated emergency medical kit but as seen in this incident, the pieces may or may not work together properly and the kit may be different on different flights) for all flights should be developed.  This kit should ensure that all necessary equipment and medication for the most common and dangerous inflight medical conditions is included and that all flight attendants know where to find and how to put together the necessary pieces of equipment in the kit.  If, as seems to be the case, medical professionals on flights are expected to be responsible for other sick passengers in the case of an emergency, they should be notified as such.  If this occurred, flight attendants would also be aware of where to find these medical professionals.  This could involve a briefing similar to that received by personnel who sit in exit rows.  Where easy diversion is not possible (such as flights over oceans or uninhabited areas), at least one flight attendant should receive EMT training which includes in-depth instruction on how to use the medication and equipment available in the medical kit.  Coordination with onground medical staff should continue, with a focus on trying to make medical history available when possible.

The aviation industry has made flying incredibly safe.  Although inflight medical emergencies are rare and usually non-fatal, the industry now has the opportunity to make experiencing a medical emergency onboard a flight even safer.

To view the Outline, Cause Map, and proposed solutions,  please click “Download PDF” above.  Or click here to read more.