Death from Patient-Controlled Morphine Overdose

By ThinkReliability Staff

Could improving the reliability of the supply chain improve patient safety?

The unexpected death of a patient at a medical facility should always be investigated to determine if there are any lessons learned that could increase safety at that facility. A thorough analysis is important to determine all the lessons that can be learned. For example, the investigation into a case where a patient death was caused by a morphine overdose delivered by a patient-controlled analgesia (PCA) found that increasing the reliability of the supply chain, as well as other improvements, could increase patient safety.

The information related to this patient death was presented as a morbidity and mortality case study by the Agency for Healthcare Research and Quality. The impacts to goals, analysis, and lessons learned from the case study can be captured in a Cause Map, a visual form of root cause analysis that develops the cause-and-effect relationships in sufficient detail to be able to find solutions that will reduce the risk of similar incidents recurring.

Problem-solving methodologies such as Cause Mapping begin with defining the problem. In the Cause Mapping method, the what, when and where of the problem is captured, as well as the impact to the goals, which defines the problem. In this case, the patient safety goal is impacted due to the death of a patient. Because the death of a patient under medical care can cause healthcare providers to be second victims, this is an impact to the employee safety goal. A death associated with a medication error is a “Never Event“, which is an impact to the compliance goal. The morphine overdose is an impact to the patient services goal. In this case, the desired medication concentration (1 mg/mL morphine) was not available, which can be considered an impact to the property goal. Lastly, the response and investigation are an impact to the labor/time goal.

The analysis begins with one impacted goal and developing cause-and-effect relationships. One way to do this is by asking “Why” questions, but it’s also important to ensure that the cause listed is sufficient to have resulted in the effect. If it’s not, another cause is required, and will be joined with an “AND”. In this case, the patient death resulted from a morphine overdose AND a delayed response to the patient overdose. (If the response had come earlier, the patient might have survived.) It’s important to validate causes with evidence where possible. For example, the morphine overdose is a known cause because the autopsy found a toxic concentration of morphine. Each cause in the Cause Map then becomes an effect for which causes are captured until the Cause Map is developed to the point where effective solutions can be found.

The available information suggests that the patient was not monitored by any equipment, and that signs of deep sedation, which preceded respiratory depression, were missed during nurse checks. Related suggestions for promoting the safe use of PCA include the use of monitoring technology, such as capnography and oximetry, and assessing and recording vital signs, including depth of respiration, pain and sedation.

The patient in this case was given PCA morphine. However, too much morphine was administered. The pump settings were based on the concentration of morphine typically used (1 mg/mL).   However, that concentration was not available, so a much higher concentration (5 mg/mL) was used instead. The settings on the pump were entered incorrectly for the concentration of morphine used, likely because of confirmation bias (effectively assuming that things are the way they always are – that the morphine on the shelf will be the one that’s usually there). There was no effective double check of the order, medication and pump settings.

Related suggestions for promoting the safe use of PCA include the use of “smart” pumps, which suspend infusion when physiological parameters are breached, the use of barcoding technology for medication administration (which would have flagged the use of a different concentration), performing an independent double check, storing only one concentration of medications in a dispensing cabinet (requiring other concentrations to be specially ordered from the pharmacy), standardizing and limiting concentrations used for PCA, and yes, improving the supply chain so that it’s more likely that the lower concentration of morphine will be available. Any of these suggestions would improve patient safety; implementation of more than one solution may be required to reach an acceptable level of risk. Imagine just improving the supply chain so that there would be very few (if any) circumstances where the 1 mg/mL concentration of morphine is unavailable. Clearly the risk of using the wrong concentration would be lessened (though not zero), which would reduce the potential for patient harm.

To view a one-page downloadable PDF with the outline, Cause Map, and action items, click “Download PDF” above. Click here to read the case study.

“Desensitization” Process Improves Compatibility of Donor Kidneys

By ThinkReliability Staff

Many patients with advanced and permanent kidney failure are recommended for kidney transplants, where a donor kidney is placed into their body. Because most of us have two kidneys, donor kidneys can come from either living or deceased donors. If a compatible living donor is not found, a patient is placed on the waiting list for a deceased donor organ. Unfortunately, there are about 100,000 people on that waiting list. While waiting for a new kidney, patients must undergo dialysis, which is not only time-consuming but also expensive.

Researchers estimate that about 50,000 people on the kidney transplant waiting list have antibodies that impact their ability to find a compatible donor kidney. Of those, 20,000 are so sensitive that finding a donor kidney is “all but impossible” . . . .until now.

A study published March 9, 2016 in the New England Journal of Medicine provides promising results from a procedure that alters patients’ immune systems so they can accept previously “incompatible” donor kidneys. This procedure is called desensitization. First, antibodies are filtered out of a patient’s blood. Then the patient is given an infusion of other antibodies. The immune system then regenerates its own antibodies which are, for reasons as yet unknown, less likely to attack a donated organ. (If there’s still a concern about the remaining antibodies, the patient is treated with drugs to prevent them from making antibodies that may attack the new kidney.)

The study examined 1,025 patients with incompatible living donors at 22 medical centers and compared them to an equal number of patients on waiting lists or who received a compatible deceased donor kidney. After 8 years, 76.5% of the patients who were desensitized and received an “incompatible” living donor kidney were alive compared to only 43.9% of those who remained on the waiting list and did not receive a transplant.

The cost for desensitization is about $30,000 and a transplant costs about $100,000. However, this avoids the yearly life-long cost of $70,000 for dialysis. The procedure also takes about two weeks, so patients must have a living donor. The key is that ANY living donor will work, because the desensitization makes just about any kidney suitable, even for those patients who previously would have had significant trouble finding a compatible organ. Says Dr. Krista L. Lentin, “Desensitization may be the only realistic option for receiving a transplant.”

The study discusses only kidney transplants but there’s hope that the process will work for living-donor transplants of livers and lungs. Although the study has shown great success, the shortage of organ donations – of all kinds – is still a concern.

To view the process map for kidney failure without desensitization, and how the process map can be improved with desensitization, click on “Download PDF” above. To learn more about other methods to increase the availability of kidney donations, see our previous blog on a flushing process that can allow the use of kidneys previously considered too damaged for donation.


Patients and Insurers Pay Big for Discarded Cancer Drugs

By ThinkReliability Staff

A recent study has found that the size of vials used for cancer drugs directly results in waste, and a significant portion of the high – and steadily increasing – cost of cancer drugs.  With most cancer medications available in only one or two sizes, usually designed to provide an amount of medication for the largest patients, many times medication is left over in each vial.

The researchers estimate that about $2.8 billion is spent by Medicare and other insurers reimbursing for medication that is discarded.

This cost – paying for medication that is literally thrown out in most cases – can be considered an impact to the property goal.  As the cost increases for drugs, it’s not only Medicare and other insurers that are impacted, but patients, many of whom pay a fixed percentage of their drug costs.  This impacts the patient services goal.  The disposal of these drugs has a potential environmental impact, impacting the environmental goal.  The impacts to the goals as a result of an issue, as well as the what, when and where of that issue, are captured in a problem outline, which is the first step of the Cause Mapping process, which develops a visual diagram of the cause-and-effect relationships (a type of root cause analysis).

The second step of the process is to begin with an impacted goal and develop the cause-and-effect relationships.  This can be done by asking “why” questions and ensuring that all the causes necessary to result in an effect are included.  In some cases, more than one cause is required to produce an effect.  In these cases, the causes are both connected to the effect and joined with an “AND”.

In this case, beginning with the property goal, we can ask “Why do Medicare and other insurers have increased costs?”  This is due to the increased cost of cancer drugs, which results from significant amount of medications being thrown away.  We can add evidence to the causes to support their inclusion in the Cause Map or provide additional information.  For example, the study found that the earnings on disposed medication made up 30% of the overall sales for one cancer medication.

A significant amount of medication is being thrown away because there is medication left over in each vial used to deliver the medication, and the leftover medication in the vials is thrown away.  Both these causes are required to result in the medication waste.  Leftover medication is thrown away because it can only be used in rare circumstances (within six hours at a specialized pharmacy).  There is leftover medication in the vials because the vials hold too much medication for many patients.  (Most medication is administered based on patient weight.)  The vials hold too much medication because many medications are provided in only one or two vial sizes.  This is true of 18 of the top 20 cancer drugs.  Providing alternate vial size is not required by regulators, whose concern is limited to patient safety or potential medical errors.  Specifically, Congress has not authorized the US Food and Drug Administration (FDA) to consider cost. Drug manufacturers select vial size based on “marketing concerns” or, effectively, profit.  The study found that providing more vial sizes for one medication would reduce waste by 84% but would also reduce sales by $261 million a year.

Several of the vials for cancer medications are sized based on a larger (6’6″, 250 lb.) patient.  According to one drug manufacturer, this is done by design, resulting from working with the FDA for a vial that would provide enough medication “for a patient of almost any size.”  At least one drug manufacturer has suggested that the full vial be administered regardless of patient size, but one of the study’s co-authors says that extra medication does nothing to help patients, so it would still be wasted.

Instead, the researchers propose that the government either mandate the drugs be distributed in multiple vial sizes that would minimize waste, or that the government is refunded for wasted quantities.  They point out that alternate vial sizes are provided in Europe, “where regulators are clearly paying attention to this issue”, says Dr. Leonard Saltz, a co-author of the study.

To view the initial outline, Cause Map and proposed solutions, please click on “Download PDF” above.  Click here to view the study and drug waste calculator.

Do you know how an MRI works?

By Kim Smiley

About 30 million magnetic resonance imaging (MRI) scans are performed in the United States each year. They are most frequently used to create images of the brain and spinal cord, but can also help diagnose aneurysms, eye and inner ear disorders, strokes, tumors and other medical issues. MRIs are painless and do not expose a patient to potentially harmful radiation, making them one of the safest medical procedures available.

MRIs are fairly common and most people have heard of them, but do you have any idea how they work?  A Process Map is used to document how a work process is performed, which can be useful when explaining how a process works to somebody who is unfamiliar with it.  To view a high level Process Map of how an MRI is used to create an image, click on “Download PDF”.

The high level Process Map is very basic and would not be useful to somebody trying to learn how to perform an MRI, but it might be helpful in explaining to a patient what to expect during the procedure and how an MRI image is produced.  A more detailed Process Map that included information on each step that needs to be done to perform an MRI could be built for use as a training aid or as a way to document best work practices, but sometimes a basic high level Process Map can also be helpful.

So how does an MRI create detailed images of the inside of a human body? An MRI uses a strong magnet to create a large, steady magnetic field around the patient’s body.  Many atoms, such as hydrogen atoms, have strong magnetic moments that cause them to align in the same direction when exposed to a magnetic field.  Once atoms in the patient’s body are aligned along the field lines of the large magnet, the MRI machine produces a pulse of radio frequency current.  During the pulse of energy (which is extremely brief), atoms in the patient’s body absorb this energy and rotate to align with the radio frequency current.  Once the pulse is over, the atoms will rotate back to their original position, emitting energy.  Atoms in different types of body tissue return to their original positions at different rates and release different energy signals. The body is pulsed many times by different frequencies at different locations to target the specific type of issue being looked at by the MRI. All of the energy emitted by the atoms during these pulses is collected by antennas and a computer uses a mathematical formula to convert the data into images.

Obviously this is a very high level explanation that leaves out a lot of detail, but the basic idea is that an MRI uses changing magnetic fields and the body’s natural magnetic properties to produce detailed images of the human body.  The patient’s role during an MRI is simple (if maybe a little claustrophobic), but the process by which the MRI image is produced is fairly complicated to understand.  Having a simple, visible explanation of what is going on may help make a patient feel more comfortable with their experience.

Can you think of a time when it would be useful to explain the big picture of a work process to somebody, whether a manager or a customer? Creating a simple high Level Process Map to help explain a process to people that aren’t directly involved in the work is something that can be useful across many industries.