All posts by Kim Smiley

Mechanical engineer, consultant and blogger for ThinkReliability, obsessive reader and big believer in lifelong learning

The end of the Guinea worm?

By Kim Smiley 

Guinea worm disease is poised to become the second human disease to be eradicated (after smallpox). In the 1980s, there were millions of cases of Guinea worm disease each year and the number has plummeted to only two confirmed cases so far in 2016, both believed to have been contained before the disease had a chance to spread. This accomplishment is particularly impressive considering that there is no cure or vaccine for Guinea worm disease. In fact, the most effective “cure” for the disease used today is the same one that has been used for thousands of years – to wrap the worm around a stick and slowly pull it out. (Read our previous blog “Working to Eradicate a Painful Parasite” to learn more about the problems caused by Guinea worm disease.)

So how has this horrible disease been fought so effectively?  We need to understand how the disease spreads to understand how the cycle was broken.  (Click on “Download PDF” to see a Process Map of the Guinea worm lifecycle.) The Guinea worm is a human parasite that spreads from host to host through the water supply.  The (rather disgusting) lifecycle begins with Guinea worm embryos squirming and wiggling in a freshwater pond, hoping to attract the attention of unsuspecting water fleas.  Once consumed by a water flea, the Guinea worm embryos drill out of the water flea’s digestive tract, move around the body cavity and feed on the water flea.  When a human then drinks the water containing the infected water flea, the lifecycle continues.

The water flea is dissolved by digestive juices in the human’s stomach and the Guinea worm embryo drills out of the intestines and crawls into the abdominal blood vessels, remaining in the body for several months until it reaches sexual maturity.  If the human is unlucky enough to be hosting both a male and female Guinea worm, the parasites will mate.  The male then die and millions of embryos grow in the female.  The female worm will usually make her way to the host’s leg or foot, pierce the skin and release an irritant that creates a painful blister.

Human hosts will often put the fiery blister into water to soothe the pain.  The female worm senses the water and releases thousands of embryos from her mouth.  She doesn’t release all her embryos at once, but will continue to release embryos when she senses water over a period of time.  If the embryos happen to land in a pond with water fleas, the whole painful process can start anew.

Once the lifecycle of the Guinea worm was understood, communities and aid organizations were able to use the information to disrupt the lifecycle and prevent the Guinea worm from spreading.  Some aid organizations helped provide access to clean drinking water or straws with filters that removed water fleas and prevented Guinea worm infections. In other places, the Guinea worm larvae were killed by treating the water with larvicide. But the most effective solution has been simply keeping infected people out of the water supply.  Once most people understood the consequence of putting Guinea worm blisters in drinking water they simply (if painfully) avoided the ponds used for drinking water, but some communities also implemented new laws and fines or posted guards at water holds to ensure that no infected individuals went into the water. These methods have proven very effective and the Guinea worm is now one of the most endangered animals on the planet.

The key to fighting the Guinea worm was education. The most effective solutions were simple and low-tech. No modern vaccine or modern medical knowledge was needed to prevent Guinea worm infections, just knowledge about how the disease spread. Guinea worms have been infecting people for millions of years (they have even been seen in Egyptian mummies), and the lifecycle could have been broken long ago if it had been better understood.

Millions of sippy cups recalled

By Kim Smiley

On May 27, 2016, it was announced that 3.1 million Tommee Tippee Sippee spill-proof cups were being recalled because of concerns about mold. The issue came to light after consumers called the company to complain about finding mold in children’s cups and several alarming photos of moldy cup valves were posted on the company’s Facebook page, some shared thousands of times. There have been more than three thousand consumer reports about mold forming in the cup valves, including 68 cases of illness that are consistent with consuming mold.

A Cause Map, a visual root cause analysis, can be built to better understand this issue. The first step in the Cause Mapping process is to fill in an Outline with the basic background information, including how the issue impacts the overall goals. In this case, the safety goal is impacted because 68 cases of illness have been reported. The regulatory call is impacted by the recall of the cups and the economic goal is impacted because of the high cost associated with recalling and replacing millions of cups. The time required to investigate and address the issue can be considered an impact to the labor/time goal. Additionally, the customer service goal is impacted because more than 3,000 consumers have reported mold in their sippy cups and because of the negative social media.

The next step in the Cause Mapping process is to build the Cause Map itself. The Cause Map is built by asking “why” questions and visually laying out the answers to show the cause-and-effect relationships. Understanding the many causes that contribute to an issue can help a broader range of solutions to be considered rather than focusing on a single “root cause” and focusing on solving only one issue. In this example, the mold is growing in the one-piece valve used in this model of cup. The valves remained moist, likely because they are not allowed to dry between uses, and they were not cleaned frequently enough to prevent mold growth. Many consumers have complained that it is very difficult or even impossible to adequately clean the cup valve which has contributed to the mold issue. In addition to the growth of the mold, one of the reasons children have gotten is sick is because it is hard to see the mold. Caregivers are unaware of the fact that the cups are moldy and continue to use them. (To see how these issue might be captured on a Cause Map, click on “Download PDF” above.)

The final step in the Cause Mapping process is to develop and implement solutions that will reduce the risk of the problem from reoccurring. In this case, all cup designs that use the single one-piece valve are being recalled and the valve replaced with either a trainer straw cup with no valve or a sippy cup with a new design two-piece valve that is easier to clean. The new two-piece valve comes apart in such a way that should also make it much easier to identify a potential mold issue, which should hopefully reduce the likelihood that a child will ingest mold. (If you think you may own one of these cups, you can get more information about how to get a replacement here.)

One of the interesting pieces of this case study is that the company has to work to address the technical issue with the valve design, but it also has to work to rebuild consumer trust. Consumers, especially when buying products for small children, will avoid a company if they don’t believe they take safety concerns seriously. This company has taken a beating online by outraged parents in the months leading up to the recall. In addition to designing a valve that will be less likely to harbor mold, it benefited the company to ensure the new design made it easy for parents to see that the cup valve was mold-free and safe. The company has also worked to spread information about the recall and tried to make it easy for consumers to get their recalled cups replaced. How a recall is handled has a huge impact on how consumers respond to the issue. A recall that isn’t handled well on top of an issue that has already shaken consumer trust can quickly spell disaster for a company. Consumers can be much more forgiving of an issue if a company responds quickly and if any necessary recalls are done as quickly and effectively as possible. It will be interesting to see how this company weathers this storm now that the cups have been recalled and the mold issue addressed.

Regulators ask hard questions about blood testing startup Theranos

By Kim Smiley

The biotech startup Theranos has been all over headlines in recent years.  At first the company made news for its ambitious goals of running comprehensive laboratory testing on just a few drops of blood.  The company has claimed to have created a handheld medical device (nicknamed Edison) that uses only a finger prick of blood and makes blood testing less painful, faster and cheaper.  Theranos’ young and compelling founder Elizabeth Holmes has been featured in multiple magazines, gave a popular Ted talk and has even been compared to Steve Jobs and Bill Gates. In 2014, the company was valued at $9 billion.

Lately, the type of headlines the company has made have changed as the company has been embroiled in controversy.  The multiple concerns about Theranos can be visually represented in a Cause Map, a visual format for performing root cause analysis.  A Cause Map intuitively breaks down a problem to the basic cause-and-effect relationships and visually lays them out.  (Click on “Download PDF” to view an intermediate Cause Map of these issues.)  Many of the issues raised haven’t been proven yet and require more evidence so a question mark is used to note this open question within the cause box.

The problems for the company started coming to a head in the latter half of 2015. A December 2015 report by The Wall Street Journal, At Theranos, Many Strategies and Snags, raised concerns about the accuracy of the company’s propriety handheld blood testing device.  Studies showed that the results of the Edison device differed from testing done by traditional blood testing methods. Additionally,  inspections over a three-week period in August and September 2015 at two Theranos facilities found multiple issues.  Specifics on the exact problems found during the inspections have not been released, but they have been described generically as problems with record keeping, quality audits, and handling of consumer complaints. The FDA has also raised concerns about the approval of a medical device called a nanotainer that is used by Theranos. The nanotainer was classified as a Class I exempt device during the approval process and it should have been classified as a risky Class II device that would have received greater scrutiny during the approval process.

A federal criminal investigation into Theranos is now underway looking into claims the company made about its technology.  A separate probe by the Securities and Exchange Commission is working to determine whether the company misrepresented its new blood testing technology and its claim that it could run a full range of laboratory tests from just a prick of blood from a finger.

As of right now, Theranos has taken a beating in the court of public opinion, but the company has not been convicted of anything and is still selling blood tests from 40 Walgreens in Arizona.  Only time will tell the fate of the company, but the issues it has faced can be seen as a cautionary tale for other biotech startups.  Even if the company is cleared of all wrongdoing, there are lessons to be learned about ensuring laboratories meet all appropriate standards and ensuring proper approvals of all medical devices.

NIH suspends work at two facilities

By Kim Smiley

Research has been suspended at two National Institutes of Health (NIH) facilities – a National Cancer Institute laboratory working on cell therapy production and a National Institute of Mental Health facility that makes positron emission tomography materials – over concerns about patient safety. A panel of experts determined that these facilities were not in compliance with quality and safety standards and they are shut down pending a review and any necessary upgrades.

A Cause Map, a visual format for root cause analysis, can be built to help understand this issue.  The first step in the Cause Mapping process is to fill in an Outline with the basic background information for an issue, along with how the issues impacts the overall goals. Thankfully, no patient harm has been identified as a result of issues at the facilities, but the potential for patient harm existed and potential impacts should be included on the Outline. No new patients will be enrolled in the affected trials until the issues are resolved and this is an impact to the schedule/operations goal. Once the Outline is complete, the Cause Map is then built by asking “why” questions and the answers are laid out to visually show the cause-and-effect relationships. (Click on “Download PDF” to see a completed Outline and high level Cause Map of this issue.)

So why was work at two NIH facilities shut down? A little background is needed to understand this issue. In April 2015, fungal contamination was found in products that were supposed to be sterile that were prepared at a different NIH facility, the Clinical Center’s Pharmaceutical Development Service. The investigation into the contaminated product found multiple deficiencies, both in the facility itself and in work practices. The deficiencies included a filter missing in an air handling system and insects found in two light bays in clean rooms. (Read our previous blog to learn more.) Following this issue, the director of NIH appointed a panel of experts to review safety compliance at all other NIH facilities that produce sterile or infused products for administration to research participants.

The panel’s evaluation is still underway, but preliminary findings determined that the two facilities in question are not in compliance with quality and safety standards and production has been suspended as a result.  The panel found that NIH has many outdated or inadequate facilities and that personnel lack expertise on applicable regulations, but no specific details about the deficiencies found have been released. NIH plans to do a rigorous review to identify and correct issues found before these facilities resume manufacturing sterile products. No timeline has been given at this point.

The final step in the Cause Mapping process is to identify and implement solutions to reduce the risk of similar errors reoccurring in the future. In addition to correcting the deficiencies found at these facilities, NIH is working on creating more oversight to help ensure manufacturing facilities are in compliance with safety regulations. The panel recommended the creation of both an outside hospital board to oversee the clinical center and a new central office to coordinate research quality and safety oversight.

Only time will tell how effective these solutions prove to be, but I find it promising that NIH proactively reviewed all of the facilities that produce sterile or infused products for administration to research participants following the fungal contamination issues last year.  It may be painful and embarrassing to suspend work at facilities, but the process is at least moving in the right direction if problems can be corrected before patients are harmed.

16 patients infected with hepatitis C; thousands potentially exposed

By Kim Smiley

At least 16 patients were infected with hepatitis C after receiving treatment at two hospitals in Utah. Additionally, officials have stated that an estimated 7,200 patients may have potentially been exposed to hepatitis C.  Investigators are working to determine exactly what happened and to test patients who were potentially exposed.

Hepatitis C is a blood-borne illness and cannot be spread by casual contact, including through saliva or sharing food and water. It is not an illness that should typically be at risk of transmission from healthcare professional to patient. A nurse who tested positive for a rare form of hepatitis C worked at the two hospitals that have each had at least one patient who tested positive for the same rare form of hepatitis C. Officials have not released detailed information on how the hepatitis C outbreak occurred, but there are some suspicious circumstances.

The nurse in question was fired in November 2014 after a hospital found evidence that she had diverted medications, which means she was tampering with syringes or other injectable equipment to steal medication.  The nurse pled guilty to the offense and her license was suspended in December of 2015.

It can be very difficult to identify medication tampering by medical personnel, but one of the most alarming facets of this case is that the nurse had been reprimanded and fined by a previous employee for similar misbehavior.  It seems like it should be possible to identify whether a prospective employee has a history of issues with medication diversion during the hiring process. Investigators have not commented on what type of background checks were done prior to her employment at the second hospital, but it seems like an area where hard questions should be asked.

The immediate risk of this particular nurse exposing more patients has been addressed since she is no longer working at a healthcare facility.  The hospitals are offering free testing to anybody who was potentially exposed and are working on a case-by-case basis to determine how to pay for any necessary treatment of those who were infected.  No longer-term solutions have been identified yet, but the investigation is still underway so it is not clear if any lessons learned will result in changes to overall work processes.

Click on “Download PDF” to view an initial Cause Map of this incident.  A Cause Map visually lays out cause-and-effect relationships and can help identify a wider range of causes that contributed to an issue.  Identifying more than a single root cause can promote a wider range of solutions to be considered and can aid in reducing the risk that a problem may reoccur.

Do you know how an MRI works?

By Kim Smiley

About 30 million magnetic resonance imaging (MRI) scans are performed in the United States each year. They are most frequently used to create images of the brain and spinal cord, but can also help diagnose aneurysms, eye and inner ear disorders, strokes, tumors and other medical issues. MRIs are painless and do not expose a patient to potentially harmful radiation, making them one of the safest medical procedures available.

MRIs are fairly common and most people have heard of them, but do you have any idea how they work?  A Process Map is used to document how a work process is performed, which can be useful when explaining how a process works to somebody who is unfamiliar with it.  To view a high level Process Map of how an MRI is used to create an image, click on “Download PDF”.

The high level Process Map is very basic and would not be useful to somebody trying to learn how to perform an MRI, but it might be helpful in explaining to a patient what to expect during the procedure and how an MRI image is produced.  A more detailed Process Map that included information on each step that needs to be done to perform an MRI could be built for use as a training aid or as a way to document best work practices, but sometimes a basic high level Process Map can also be helpful.

So how does an MRI create detailed images of the inside of a human body? An MRI uses a strong magnet to create a large, steady magnetic field around the patient’s body.  Many atoms, such as hydrogen atoms, have strong magnetic moments that cause them to align in the same direction when exposed to a magnetic field.  Once atoms in the patient’s body are aligned along the field lines of the large magnet, the MRI machine produces a pulse of radio frequency current.  During the pulse of energy (which is extremely brief), atoms in the patient’s body absorb this energy and rotate to align with the radio frequency current.  Once the pulse is over, the atoms will rotate back to their original position, emitting energy.  Atoms in different types of body tissue return to their original positions at different rates and release different energy signals. The body is pulsed many times by different frequencies at different locations to target the specific type of issue being looked at by the MRI. All of the energy emitted by the atoms during these pulses is collected by antennas and a computer uses a mathematical formula to convert the data into images.

Obviously this is a very high level explanation that leaves out a lot of detail, but the basic idea is that an MRI uses changing magnetic fields and the body’s natural magnetic properties to produce detailed images of the human body.  The patient’s role during an MRI is simple (if maybe a little claustrophobic), but the process by which the MRI image is produced is fairly complicated to understand.  Having a simple, visible explanation of what is going on may help make a patient feel more comfortable with their experience.

Can you think of a time when it would be useful to explain the big picture of a work process to somebody, whether a manager or a customer? Creating a simple high Level Process Map to help explain a process to people that aren’t directly involved in the work is something that can be useful across many industries.

Hospital pays hackers ransom of 40 bitcoins to release medical records

By Kim Smiley

In February 2016, Hollywood Presbyterian Medical Center’s computer network was hit with a cyberattack.  The hackers took over the computer system, blocking access to medical records and email, and demanded ransom in return for restoring the system.  After days without access to their computer system, the hospital paid the hackers 40 bitcoins, worth about $17,000, in ransom and regained control of the network.

A Cause Map, an intuitive visual format for performing a root cause analysis, can be built to analyze this incident.  Not all of the information from the investigation has been released to the public, but an initial Cause Map can be created to capture what is now known.  As more information is available, the Cause Map can easily be expanded to incorporate it.

The first step in the Cause Mapping process is to fill in an Outline with the basic background information.  The bottom portion of the Outline has a place to list the impacts to the goals.  In this incident, as with most, more than one goal was impacted.  The patient safety goal was impacted because patient care was potentially disrupted because the hospital was unable to access medical records.  The economic goal was also impacted because the hospital paid about $17,000 to the hackers.  The fact that the hackers got away with the crime could be considered an impact to the compliance goal.  To view a filled-in Outline as well as a high level Cause Map, click on “Download PDF” above.

Once the Outline is completed, defining the problem, the next step is to build the Cause Map to analyze the issue. The Cause Map is built by asking “why” questions and laying out the answers to show all the cause-and-effect relationships that contributed to an issue.  In this example, the hospital paid ransom to hackers because they were unable to access their medical records.  This occurred because the hospital used electronic medical records, hackers blocked access to them and there was no back-up of the information.  (When more than one cause contributed to an effect, the causes are listed vertically on the Cause Map and separated with an “and”.)

How the hackers were able to gain access to the network hasn’t been released, but generally these types of ransomware attacks start by the hacker sending what seems to be routine email with an attached file such as a Word document. If somebody enables content on the attachment, the virus can access the system. Once the system is infected, the data on it is encrypted and the user is told that they need to pay the hackers to gain access to the encryption key that will unlock the system. Once the system has been locked up by ransomware, it can be very difficult to gain access of the data again unless the ransom is paid.  Unless a system is designed with robust back-ups, the only choices are likely to be to pay the ransom or lose the data.

The best way to deal with these types of attacks is to prevent them. Do not click on unknown links or attachments.  Good firewalls and anti-virus software may help if a person does click on something suspicious, but it can’t always prevent infection.  Many experts are concerned about the precedent set by businesses choosing to pay the ransom and fear these attacks may become increasingly common as they prove effective.

Study finds many patients don’t understand their discharge instructions

By Kim Smiley 

Keeping patients as comfortable and safe as possible following hospitalization is difficult if they aren’t receiving appropriate follow-up care after returning home.  But a recent study “Readability of discharge summaries: with what level of information are we dismissing our patients?” found that many patients struggle to understand their follow-up care instructions after leaving the hospital.  

Generally, follow-up care instructions are verbally explained to patients prior to discharge, but many find it difficult to remember all the necessary information once they return home.  The stress of the hospitalization, memory-clouding medication, injuries that may affect memory and the sheer number of instructions can make remembering the details of verbal follow-up care instructions difficult. 

In order to help patients understand and remember their recommended discharge instructions, written instructions are provided at the time of discharge.  However, the study found that many patients cannot understand their written follow-up care instructions.  The study determined that a significant percentage of patients are either functionally illiterate or marginally literate and lack the reading skills necessary to understand their written instructions.  One assessment found that follow-up care instructions were written at about a 10th grade level and another assessment determined that the instructions should be understood by 13 to 15-year-old students.  

One of the causes that contributes to this problem is that discharge instructions are written with two audiences in mind – the patient and their family as well as their doctor.  Many patients need simple, clear instructions, but other doctors understand medical jargon and more complicated care instructions.  

It is important to note that the study did have several limitations.  Researchers did not give patients reading tests and instead relied on the highest level of education attained to estimate literacy skills.  Non-English speakers were excluded.  Even with this limitation, the study provided information that should help medical professionals provide clear guidance on follow-up care recommendations. 

The obvious solution is to work towards writing care instructions that are as simple and clear to understand as possible. In order to help patients clearly understand their follow-up care instructions, the American Medical Association already recommends that health information be written at a sixth grade reading level.  Providing clear contact information and encouraging patients to call their nurse or doctor with any questions about discharge instructions could also improve the follow-up care patients are receiving.

Shoveling snow really can trigger heart attacks

By Kim Smiley

You may have heard that shoveling snow can trigger a heart attack and studies have found that there is truth behind that concern.  Before you pick up a shovel this winter, there are a few things you should know.

Shoveling can be much more strenuous than many people realize – even more strenuous than running at full speed on a treadmill.  Snow shoveling also tends to be a goal-oriented task.  People want to clear the driveway before they stop and they may push their bodies beyond the point where they would if they were exercising for fitness.

Cold temperatures can increase the risk of heart problems occurring.  When a body gets cold, the arteries constrict and blood pressure can increase, which in turn increases the risk of heart issues.  High blood pressure and a sudden increase in physical activity can be a dangerous combination.  Additionally, it may take longer than normal for emergency help to arrive if it is needed because of snow and ice on the roadways which makes the situation potentially even more dangerous.

If you are young and fit, snow shoveling can be a great workout (and maybe you could help out your elderly neighbors if possible…), but if you are at risk of heart problems, you may want to put some thought into how you attack the problem of clearing your driveway and/or sidewalks.  First off, you should know if you are potentially at high risk.  Studies have found that people over 55 are four times more likely to experience heart-related issues while shoveling and men are twice as likely as women. People with known heart problems, diabetes or high blood pressure are also potentially high-risk.  Anybody who is sedentary is also at a higher risk of heart issues than somebody who exercises regularly.

So what should you do if you are concerned about the risk of heart problems and shoveling?  If possible, you may want to avoid shoveling if there is somebody else who can do it.  If you are determined to shovel yourself, make sure you drink lots of water and dress warmly.  Try to push the snow if possible, rather than shoveling it.  It is also generally better to shovel lots of lighter loads rather than fewer, heavy loads.  If possible, you may want to shovel several times throughout the storm to spread the work out over time. Take frequent breaks and stop immediately if you feel tired, lightheaded, short of breath or your chest hurts. Stay safe this winter!

To see a Cause Map, a visual root cause analysis, of this issue, click on “Download PDF” above.  A Cause Map visually lays out all the causes that contribute to an issue so that it can be better understood.  This example Cause Map also includes evidence and potential solutions.

The water crisis in Flint, Michigan

By Kim Smiley

The quality of tap water, or rather lack thereof, in Flint, Michigan has been all over headlines in recent weeks. But prior to a state of emergency being declared and the National Guard being called up, residents of the town reported strangely colored and foul tasting water for months and were largely ignored. In fact, they were repeatedly assured that their water was safe.

Researchers have determined that lead levels in the tap water in Flint, Michigan are 10 times higher than previously measured. Forty-three people have been found to have elevated lead levels in their blood and there are suspected to be more cases that have not been identified. Even at low levels, lead can be extremely damaging, especially to young children under 6. Lead exposure can cause neurological damage, decreased IQ, learning disabilities and behavior problems. The effects of lead exposure are irreversible.

The water woes in Flint, Michigan began when the city switched their water supply to the Flint river in April 2014. Previously, the city’s water came from Lake Huron (through the city of Detroit water system). The driving force behind the change was economics. Using water from the Flint river was cheaper and the struggling city needed to cut costs. Supplying water from the Flint River was meant to be a temporary move to hold the city over while a new connection to the Great Lakes was built within a few years.

The heart of the problem is that the water from the Flint river is more corrosive than the water previously used. The older piping infrastructure in the area used lead pipes in some locations as well as lead solder in some joints. As the more corrosive water flowed through the piping, the lead leached into the water.

A Cause Map, a visual root cause analysis, can be built to document what is known about this issue. A Cause Map intuitively lays out the cause-and-effect relationships that contributed to an issue. Understanding the many causes that contribute to an issue leads to better, more detailed solutions to address the problem and prevent it from reoccurring. The Flint water crisis Cause Map was built using publicly available information and is meant to provide an overview of the issue. At this point, most of the ‘whats’ are known, but some of the ‘whys’ haven’t been answered. It isn’t clear why the Flint river water wasn’t treated to make it less corrosive or why it took so long for officials to do something about the unsafe water. Open questions are noted on the Cause Map by including a box with a question mark in it.

This issue is now getting heavy media coverage and officials are working on implementing short-term solutions to ensure safety of the residents. The National Guard and other authorities are going door-to-door and handing out bottled water, water filters, and testing kits. Michigan Governor Richard Snyder declared a state of emergency in Flint on January 5, 2016 which allows more resources to be used to solve the issue. However, long-term solutions are going to be expensive and difficult.

The city’s water supply was switched back to Lake Huron in October 2015, but it will take more than that to “fix” the problem because there is still a concern about lead leaching from corroded piping. Significant damage to the piping infrastructure was done and the tap water in at least some Flint homes is still not safe. It is estimated that fixing the piping infrastructure could cost up to $1.5 billion. A significant amount of resources will be needed to undo the damage that has been done to the infrastructure of the city, and there is no way to undo the damage lead poisoning has already done to the area’s residents, especially the children.