Tag Archives: polio

Child Paralyzed by Vaccine-Derived Polio

By Kim Smiley

There has been amazing progress in the effort to eradicate polio, but recent cases of the disease are a harsh reminder that the work isn’t complete and now isn’t the time to be complacent.  Public health officials are planning three mass vaccination rounds in less than 120 days after a child was recently paralyzed by polio in Mali.  In addition to this case, the World Health Organization (WHO) announced that two children in western Ukraine were also paralyzed by polio.

The last case of polio was detected in Mali in 2011.  A Cause Map, a visual root cause analysis, can be used to analyze how the child contracted polio as well as help in understanding the overall impacts of this case.  The first step in a Cause Map is to fill in an outline with the basic background information, including listing how the issue impacts the different overall goals.  This issue, like most, impacts more than a single goal.  For example, the child being paralyzed is an impact to the patient safety goal, but the potential for an outbreak of polio is an impact to the public safety goal.

Once the impacts to the goals are defined, the Cause Map itself is built by asking “why” questions and including the answers in cause boxes.  The Cause Map visually lays out all the cause-and-effect relationships that contributed to an issue.  So why was the child paralyzed?  The child was infected with vaccine-derived polio because he was exposed to the disease and wasn’t immune to it, likely because he didn’t receive all four of the required doses of vaccine.  Vaccine rates in Guinea, where the child was from, dropped during the Ebola outbreak.

In this region of the world, oral polio vaccine is used and it contains weakened, but live, strains of polio virus.  After being administered oral polio vaccine, a child will excrete live virus for a period of time.  The live virus can replicate in the environment and there is the potential for it to mutate into a more dangerous form of polio, which is what causes vaccine-derived polio.

Cases of vaccine-derived polio are very rare, but are a known risk of using oral polio vaccine.  The injectable vaccine uses dead polio virus that cannot mutate, but there are other important factors that come into play.  The oral polio vaccine is cheaper and is simpler to administer than the injectable vaccine because medical professionals are needed to give injections.

The use of oral vaccines also eliminates the risk of spreading blood borne illnesses.  Because there are no needles involved, there is no risk of needles being shared between patients.  The oral vaccine also provides greater protection for the community as a whole, especially in regions with poor sanitation.  When a child is fully immunized with the oral polio vaccine this ensures immunity in the gut so that the polio virus is not excreted after exposure.  This is not true with the injectable polio vaccine; an immunized child exposed to “wild” polio would not be infected, but may still excrete polio virus after exposure and potentially spread it to others.  One negative of using the oral polio vaccine is that in rare cases (estimated to be about one in about 2.7 million) the weakened polio virus can cause paralysis in a child receiving their first dose of the vaccine.  Concern over paralysis is one of the reasons that developed nations generally use the injectable polio vaccine.

Polio is highly contagious and public health officials are planning an aggressive vaccine campaign to reduce the risk of an outbreak now that a case of polio has been verified in Mali. The plan is to have three mass vaccination rounds in less than 120 days, a level of effort aided by the many World Health Organization and United Nations staff that are still in the area as part of the response to the Ebola outbreak.  Thankfully, Guinea has not reported any cases of Ebola for several months so officials can devote significant resources to the mass polio vaccine effort.

Fighting Polio in India

By ThinkReliability Staff

On February 25, 2012, the World Health Organization removed India from the list of countries with active transmission of endemic polio.  This leaves three countries – Nigeria, Pakistan and Afghanistan – that are still struggling to eradicate polio from their population.  (See our previous blog for a discussion of the difficulties these countries are facing.)   India is an example of a remarkable success story made possible by hard work and meticulous planning.  In 2009, India reported the most polio cases of any country in the world – 741.  By the next year, the country reported on 42.  The last case of polio in India was reported on January 13, 2011.

We can use root cause analysis to determine causes of problems, and to learn from the issues of others.  We can also use it to learn from the successes of others.  Here we can use “success mapping” to create a Cause Map, or visual root cause analysis, of a successful outcome – in this case, the eradication of polio from India.  The steps of success mapping are the same as for incident mapping.  In this case, the public health goal was impacted – positively – by the absence of polio cases since 2011 in India.

We begin with the impacted goal, and ask “Why” questions.  The absence of polio cases in India is due to a successful vaccination campaign – covering more than 99% of children.  The successful program is due to a comprehensive, detailed vaccination plan, which we can lay out in a process map.  (To read more about India’s polio vaccination campaign, please see the Global Polio Eradication Initiative’s Website.)

The process for successful vaccination addresses some of the common problems with vaccination programs, which are still seen in the remaining endemic countries.  Notably, access to children is a major difficulty with vaccination programs.  In India, local volunteers canvass neighborhoods and determine the number of children in each home to provide vaccination workers with a number of children to look for and vaccinate.   Vaccination teams are also provided special tracking booklets for newborns, to ensure that any children that were not previously accounted for are added to the total.

There are many reasons that children are unable to be vaccinated.  Aid workers track the specific reason for each child that is not vaccinated and, depending on the reason, an appropriate follow-up team is sent to the house later on the same day and, if still unsuccessful, later in the week.  Follow-up teams include a community influencer if a parent refuses to vaccinate the child and a medical officer if a vaccination is not given because a child is ill.

Because some children are not found at home, transit teams were formed.  These teams vaccinate children at major intersections and transit points, such as train and bus stations.  To ensure full coverage (and that each child is vaccinated only once), children’s fingers are marked after they have received vaccinations.

It is hoped that some of these ideas can also be used by the vaccination teams in the remaining countries that have endemic polio and to ensure that polio does not return to countries that have already been removed from the list.  When ideas are successful at one site, other sites may be able to benefit from them as well.

However, a great process means nothing if you don’t have a team of dedicated workers.   As stated by India’s Prime Minister, “The real credit goes to the 2.3 million volunteers who repeatedly vaccinated children even in the most remote areas, often in very bad weather conditions. I commend each one of them for their dedication, commitment and selfless service.”  We second that commendation, and thank you for helping reduce the risk of this horrible disease.

To view the Process Map, please click “Download PDF” above.  Or click here to read more.

Only 3 Countries Remain with Endemic Polio

By ThinkReliability Staff

Polio is a horrible, crippling disease.  According to the World Health Organization (WHO), of the children who contract polio, 1 of 200 will be irreversibly paralyzed.  Of the children who are paralyzed, 5 to 10% will die because their breathing muscles are paralyzed.  The Global Polio Eradication Initiative was formed in 1988.  That year, more than 350,000 people were paralyzed.  So far in 2012 only 181 cases have been reported.  Obviously this is a huge success, but unfortunately, it’s not quite enough.  As Centers for Disease Control & Prevention (CDC) Director Dr. Frieden states “If we fail to get over the finish line, we will need to continue expensive control measures for the indefinite future…More importantly, without eradication, a resurgence of polio could paralyze more than 200,000 children worldwide every year within a decade.”

Because polio cannot live outside the body for long periods of time (unlike most diseases) it can be eradicated.  The only human disease that has been completely eradicated is smallpox.

On February 25, 2012, India was removed from the list of endemic countries, leaving only three countries where polio is endemic: Afghanistan, Nigeria and Pakistan.  Eradication in these countries continues to be difficult for various reasons.  We can look at some of the causes of why eradication has been difficult in these countries and ongoing solutions to these difficulties by analyzing the issue in a Cause Map, a visual form of Root Cause Analysis.

We begin with the impacts to the goals.  Public safety is impacted because of the risk of death and paralysis.  Public services are impacted due to the risk of contracting polio.  Additionally, the compliance goal is impacted because children are not receiving full vaccinations against polio.

There are myriad reasons for children not receiving full immune protection from vaccination against polio.  First is the difficulty finding and accessing children.  Many children in endemic areas are nomadic or homeless.  The use of “transit teams” – vaccination teams stationed at transportation stations and large crossings – aims to increase vaccination of these children.  Children are marked after they receive vaccines, to ensure the vaccines are not repeated and to allow tracking of the success of the program.  In many of the endemic areas, children are inaccessible to vaccination teams due to conflict or violence in these areas.  In some areas vaccination teams are blocked by local governments or even subject to violence.  Some religious and local government leaders do not support the vaccination program, or the makeup of the vaccination teams.  Outreach campaigns aim to reach the public, community and religious leaders.  The GPEI, WHO and CDC are trying to work with governments and religious organizations to increase acceptance of the vaccines.  The creation of small scale immediate immunization response strategies aims to allow fast response when a previously inaccessible area becomes accessible, to maximize immunization during that time.

Some parents will not allow their children to be vaccinated.  In many cultures, women will not open the door to men.  Vaccination teams will generally include at least one woman to help increase acceptance from parents.  Parents are also reluctant to vaccinate newborns, or children who are sick or sleeping.  The importance of vaccinating these children is being added to outreach information and polio hotlines are being created to attempt to provide information to reluctant parents.  Because at least four doses of the polio vaccine are required to fully protect against the disease, these issues are magnified.  Permanent polio teams in the endemic areas aim to maximize the immunization coverage and attempt to eradicate this disease once and for all.

To view the Outline and Cause Map, please click “Download PDF” above.  Or click here to read more.